

PianoRay

[image: _images/furelise.jpg]

About

PianoRay is a piano visualization tool.

[image: ../_images/furelise.jpg]

Features

	Adds dropping blocks.

	Crops piano from video.

	Glare when blocks hit piano.

	Automatically compiles audio and video.

Gallery

Example renders.

[image: ../_images/furelise.jpg]
[image: ../_images/clementi.jpg]

Installation

Dependencies

	Python version 3.8 or higher.

	FFmpeg.

	C++ compiler (g++).

	Python packages listed in requirements.txt

	Basic Python knowledge.

Latest

PianoRay is distributed on PyPI. Install with

pip install pianoray

Master Branch

May be unstable or have bugs.

pip install git+https://github.com/phuang1024/pianoray

Support

Please open an issue or discussion on
GitHub [https://github.com/phuang1024/pianoray/issues].

License

PianoRay is licensed under GNU GPL v3. See LICENSE for the full license
text.

You are free to use the software however you want.

If you are using the code itself, i.e. using some code from PianoRay for your
own projects, you must license the complete derived work with a compatible
license.

If you are just using the output i.e. the rendered videos, you may use the
output however you want, with or without credit.

First Video

First, install PianoRay. Follow instructions in
General/Installation.

Example Files

Download example performance files. This script copies the Fur Elise example
recording to ~/pianoray_tutorial.

cd /tmp
git clone https://github.com/phuang1024/pianoray
cd pianoray/examples/furelise

mkdir ~/pianoray_tutorial
cp video.mp4 midi.mid audio.mp3 ~/pianoray_tutorial

The video file contains the recording of the piano. The MIDI file contains
data about which notes are played. The audio file has the audio.

Create Settings

In order to convey settings to PianoRay, we use the Python API. The API usage
is described in detail in Animation.

Save this data to ~/pianoray_tutorial/furelise.py:

from pianoray import *

class FurElise(DefaultScene):
 def setup(self):
 self.video.resolution = (960, 540)
 self.video.fps = 30

 self.midi.file = "midi.mid"

 self.audio.file = "audio.mp3"
 self.audio.start = 20.74

 self.keyboard.file = "video.mp4"
 self.keyboard.start = 4.75
 self.keyboard.end = 37.64
 self.keyboard.crop = ((252,480), (1793,487), (1789,676), (257,666))

This creates a new scene called FurElise with some settings.
PianoRay will read the scene to obtain settings.

Render

To start the render, run these commands in a shell:

cd ~/pianoray_tutorial
pianoray render furelise.py FurElise -o out.mp4 -p

This starts rendering, using the provided Python script and class name.
The -p flag tells PianoRay to open the output file after rendering.

Rendering may take a few minutes. If the renderer crashes, run the same command
again. If it repeatedly does not work, open an issue on GitHub for help.

Second Video

In this section, we will explore the API further.

Please follow the steps in First Video first, as we will use the setup
and code as a starting point.

Basics

The Scene class extends DefaultScene, which is
defined internally. This scene contains PropertyGroup
instances, each with their own Property.

When we run code like self.video.resolution = ..., we are setting
the value of the property. The available properties are documented in
Properties. The current properties we have changed are either not
exciting or mandatory.

Let’s change the appearance of the video.

Changing Props

There is an available property blocks.color, which allows us to set
the RGB color of the blocks.

Add this line somewhere in the setup method:

self.blocks.color = (255, 160, 160) # Red

This will set the blocks to red. Run the render command to re-render the
video:

pianoray render furelise.py FurElise -o out.mp4 -p

You may be asked whether you want to overwrite the output file. Choose yes.
The new video will have red blocks.

Animation

In addition to setting values, the API also supports animating them. This
is done with keyframes.

Essentially, a keyframe contains a frame, a value, and an interpolation.
The frame is which frame the keyframe is. The value is the value at the
frame. The interpolation is how to transition from this keyframe to the
next. This is described in detail in Animation.

Warning

If a property is animated, PianoRay will ignore it’s non-animated value:

This value will be used if there is no animation.
self.blocks.color = ...

The animation will be used, but the value from the previous line
will be ignored.
self.blocks.color.animate(...)

Animation is done with a property’s animate method. Let’s animate the
blocks changing from green to blue. Add these lines somewhere:

self.blocks.color.animate(
 (100, (160, 255, 160), Interp.LINEAR), # Green
 (150, (160, 160, 255), Interp.LINEAR), # Blue
)

Render the video again and you should see the blocks change color somewhere
in the middle. Notice how the blocks are not red, even though the line above
sets them to red. Read the warning above to learn why.

Animation

Animation is done on pianoray.Property with Keyframe
instances. Each keyframe contains a frame, a value, and an interpolation.

Syntax

Call the animate method on pianoray.Property:

def setup(self):
 # All syntaxes do the same thing.
 self.group.prop.animate(frame, value, interp)
 self.group.prop.animate((frame, value, interp))
 self.group.prop.animate(
 (frame, value, interp),
 (frame2, value2, interp2),
)
 self.group.prop.animate(Keyframe(frame, value, interp))

Recording

Instructions for recording and making your own video.

Recording

You will need to record two files: Video and MIDI. In order to record these
files, you will need a MIDI keyboard, a camera, and a computer.

Video

Find a setup with a camera looking down vertically onto the keyboard.
Some things to consider:

	Safety: Make sure the camera won’t fall down.

	Stability: Try to reduce shaking, e.g. from vibrations from the keyboard.

	Focus: Make sure you focus the camera onto the keyboard before recording.
It is very disappointing to find that the video is ruined because the
keyboard recording is blurry (speaking from experience).

	Background: If you desire, place a dark tarp under the keyboard so you can
create the “hands floating over nothing” effect. There are some settings
in PianoRay to dim the background and achieve this effect.

	Privacy: If you plan to release the video to the public, make sure it
doesn’t contain any private information.

MIDI

Connect the MIDI keyboard to the computer. Use MIDI recording software to
record the MIDI. I use MidiEditor [https://midieditor.org/], which has
worked great.

Processing

Audio

Create an audio file from the MIDI.

	Download a soundfont.
SoundFonts4U [https://sites.google.com/site/soundfonts4u] has great
piano soundfonts.

	Install software that can render a MIDI file. I use
FluidSynth [https://github.com/FluidSynth/fluidsynth], and the rest
of these instructions assume you have FluidSynth.

	Run this command, which uses FluidSynth to render and FFmpeg to write
the audio file:
fluidsynth -a alsa -T raw -g GAIN -F - SOUNDFONT.sf2 MIDI.mid |
ffmpeg -y -f s32le -i - -filter:a "volume=2" AUDIO.mp3.
Replace the uppercase words with the respective values. A value of
0.5 for GAIN works usually.

Video

Make sure the video is right side up. That is, your hands come from the
bottom of the screen and play the keyboard.

If you need to rotate it, see
this page [https://stackoverflow.com/a/9570992/16570071] for rotating
with FFmpeg.

Offsets

Find the offsets for respective media. PianoRay uses these offsets. It may be
beneficial to write down these offsets somewhere so you don’t forget them later.

Audio

Open the audio in an audio player and find the timestamp, in seconds, when the
audio starts. I use Audacity [https://audacityteam.org].

Video

Find the timestamp in seconds you play the first note and when you play the
last note in the video. I use Blender [https://blender.org]’s video editor.

Video Crop

Find the pixel coordinates of the four corners of the keyboard in the video,
starting from the top left and going clockwise. If you use Blender’s video
editor, keep in mind that Blender’s image viewer has the Y coordinates reversed.

Rendering

Follow instructions in this page for rendering instructions.

CLI

Command line interface arguments.

Type pianoray -h for info.

Example Commands

	Render: pianoray render file.py ClassName

Resume Previous Render

While rendering, PianoRay saves which frame is currently being rendered to
the cache. This allows resuming a render if it is interrupted.

Configure render resuming with the --resume=... flag.

	If omitted, PianoRay will ask via stdin if you wish to resume.

	If True, PianoRay will always resume if a previous render exists.

	If False, PianoRay will never resume.

If the previous render finished completely, you can pass --resume=True
to only recompile the frames into a video.

API

The API is exposed as a Python module, pianoray.

This page contains documentation for each object. See Animation
for information on how to use the API to animate.

Property Group

	
class pianoray.PropertyGroup

	Group of properties. Define a subclass to create your PropertyGroup.
Define properties by creating annotations with :. Don’t override
any methods, as instancing a PropertyGroup subclass requires the
methods.

class MyProps(PropertyGroup):
 temperature: FloatProp(
 name="Temperature",
 desc="Temperature to cook the food at.",
 default=-10,
)

 food: StringProp(
 name="Food",
 desc="The food to cook.",
 default="Java",
)

You can set and get properties.

pgroup.temperature # Returns the property object.
pgroup.temperature.animate(...) # Animate. See Property docs.
pgroup.temperature = -273 # Calls pgroup.temperature.set_value()

Properties

	
class pianoray.Property(name: str = '', desc: str = '', animatable: bool = True, required: bool = True, mods: Sequence[Modifier] = (), default: Optional[Any] = None)

	Property base class.

	
animate(*args) → None

	Insert a keyframe.

A few syntaxes are available:

prop.animate(Keyframe(frame, value, interp))
prop.animate(Keyframe(frame, value, interp), Keyframe(frame, value, interp))
prop.animate(frame, value, interp)
prop.animate((frame, value, interp))
prop.animate((frame, value, interp), (frame2, value2, interp2), ...)

They all do the same thing. However, please do not mix syntaxes in one call
(don’t pass a keyframe object and then an unpacked tuple).

	
set_value(value: Any)

	Checks validity and sets self._value

	
value(frame: int, use_mods: bool = True, default: Optional[Accessor] = None) → Any

	Returns value at frame. Uses keyframe interpolations.
Converts to type. Applies modifiers.

	
verify(value: Any) → bool

	Check whether the value can be assigned to this prop, e.g.
min and max.

Default implementation returns True.
Override in subclass, if applicable.

	
class pianoray.BoolProp(name: str = '', desc: str = '', animatable: bool = True, required: bool = True, mods: Sequence[Modifier] = (), default: Optional[Any] = None)

	Boolean.

	
type

	alias of bool

	
class pianoray.IntProp(min: Optional[int] = None, max: Optional[int] = None, coords: bool = False, **kwargs)

	Integer.
Min and max inclusive.
Coords: Whether this quantity is in coords.

	
type

	alias of int

	
verify(value: int) → bool

	Checks min and max.

	
class pianoray.FloatProp(min: Optional[float] = None, max: Optional[float] = None, coords: bool = False, **kwargs)

	Float.
Min and max inclusive.
Coords: Whether this quantity is in coords.

	
type

	alias of float

	
verify(value: float) → bool

	Checks min and max.

	
class pianoray.StrProp(min_len: Optional[int] = None, max_len: Optional[int] = None, **kwargs)

	String.
Min and max inclusive.

	
type

	alias of str

	
verify(value: str) → bool

	Checks length min and max.

	
class pianoray.PathProp(isfile: bool = False, isdir: bool = False, **kwargs)

	Path property.
Can verify if a path exists.

	
verify(value: str) → bool

	Checks path isfile and isdir, if respective attributes are True.

	
class pianoray.ArrayProp(shape: Optional[Tuple[int]] = None, **kwargs)

	Numpy array property.

	
verify(value: ndarray) → bool

	Checks shape.

	
class pianoray.RGBProp(**kwargs)

	RGB color property.

Scene

	
class pianoray.Scene

	Group of PropertyGroups.

Create a subclass with your pgroups. Set the dictionary _pgroups to
mapping of id to property group instance.

class MyScene(Scene):
 _pgroups = {
 "food": FoodProps(),
 }

Create a subclass of a scene, and override the setup method to do animation.
Scene.setup is called at initialize time.

We are extending "MyScene", described above.
class MyOtherScene(MyScene):
 def setup(self):
 self.food.temperature = 100

	
property default: Accessor

	Equivalent to self.values(0).
Usually used to get non animatable props.

	
setup() → None

	Do any animation or property value setting here.

	
values(frame: int, use_mods: bool = True) → Accessor

	Returns Accesor object of all pgroup values at frame.

Properties

Automatically generated property docs.

AudioProps

	
	scene.audio.file: PathProp
	
	Name

	Audio File

	Description

	Path to audio file.

	Animatable

	False

	Required

	True

	Is File

	True

	
	scene.audio.start: FloatProp
	
	Name

	Start Time

	Description

	Timestamp, in seconds, you press the first note.

	Animatable

	False

	Required

	True

	Default

	0.0

BlocksProps

	
	scene.blocks.speed: FloatProp
	
	Name

	Speed

	Description

	If X is the distance between the top of the screen and thetop of the keyboard, the blocks travel speed * X per second.

	Animatable

	True

	Required

	True

	Default

	0.42

	
	scene.blocks.color: RGBProp
	
	Name

	Color

	Description

	Color of the blocks.

	Animatable

	True

	Required

	True

	Default

	[0.6 0.65 0.9]

	
	scene.blocks.radius: FloatProp
	
	Name

	Corner Radius

	Description

	Corner rounding radius in coords.

	Animatable

	True

	Modifiers

	Coords

	Required

	True

	Default

	0.25

	Minimum

	0

	
	scene.blocks.bottom_glow: FloatProp
	
	Name

	Bottom Glow

	Description

	Intensity multiplier of block glow when it hits the keyboard.

	Animatable

	True

	Required

	True

	Default

	4.0

	Minimum

	0

	
	scene.blocks.bottom_glow_len: FloatProp
	
	Name

	Bottom Glow Length

	Description

	Amount of bottom glow in coords.

	Animatable

	True

	Modifiers

	Coords

	Required

	True

	Default

	2.0

CompositingProps

	
	scene.comp.margin_start: FloatProp
	
	Name

	Start Margin

	Description

	Pause, in seconds, before first note starts.

	Animatable

	False

	Required

	True

	Default

	3.0

	Minimum

	0

	
	scene.comp.margin_end: FloatProp
	
	Name

	End Margin

	Description

	Pause, in seconds, after the last note ends.

	Animatable

	False

	Required

	True

	Default

	3.0

	Minimum

	0

	
	scene.comp.fade_in: FloatProp
	
	Name

	Fade In

	Description

	Seconds of fade in.

	Animatable

	False

	Required

	True

	Default

	1.0

	Minimum

	0

	
	scene.comp.fade_out: FloatProp
	
	Name

	Fade Out

	Description

	Seconds of fade out.

	Animatable

	False

	Required

	True

	Default

	1.0

	Minimum

	0

	
	scene.comp.fade_blur: FloatProp
	
	Name

	Fade Blur

	Description

	Blur radius of fade in coords.

	Animatable

	False

	Modifiers

	Coords

	Required

	True

	Default

	1.0

	
	scene.comp.shutter: FloatProp
	
	Name

	Shutter

	Description

	Shutter (brightness), lower = dimmer.

	Animatable

	True

	Required

	True

	Default

	1.2

	Minimum

	0

GlareProps

	
	scene.glare.radius: FloatProp
	
	Name

	Radius

	Description

	Radius of glare in coords.

	Animatable

	True

	Modifiers

	Coords

	Required

	True

	Default

	3.0

	Minimum

	0

	
	scene.glare.intensity: FloatProp
	
	Name

	Intensity

	Description

	Intensity of glare.

	Animatable

	True

	Required

	True

	Default

	0.9

	Minimum

	0

	
	scene.glare.jitter: FloatProp
	
	Name

	Jitter

	Description

	Range of random multiplier.

	Animatable

	True

	Required

	True

	Default

	0.08

	Minimum

	0

	
	scene.glare.streaks: IntProp
	
	Name

	Streaks

	Description

	Number of streaks.

	Animatable

	True

	Required

	True

	Default

	6

	Minimum

	0

	Maximum

	20

KeyboardProps

	
	scene.keyboard.file: PathProp
	
	Name

	Video File

	Description

	Path to video recording of keyboard.

	Animatable

	False

	Required

	True

	Is File

	True

	
	scene.keyboard.start: FloatProp
	
	Name

	Start

	Description

	Timestamp, in seconds, when the first note starts in the video.

	Animatable

	False

	Required

	True

	
	scene.keyboard.end: FloatProp
	
	Name

	End

	Description

	Timestamp, in seconds, when the last note starts in the video.

	Animatable

	False

	Required

	True

	
	scene.keyboard.crop: ArrayProp
	
	Name

	Crop

	Description

	Crop points of the keyboard. See docs for more info.

	Animatable

	False

	Required

	True

	
	scene.keyboard.dim_mult: FloatProp
	
	Name

	Multiplicative Dimming

	Description

	Multiplier to pixel brightness.

	Animatable

	True

	Required

	True

	Default

	1.0

	Minimum

	0

	
	scene.keyboard.dim_add: FloatProp
	
	Name

	Additive Dimming

	Description

	Value added to pixel brightness (0 to 255).

	Animatable

	True

	Required

	True

	Default

	0.0

	
	scene.keyboard.below_length: FloatProp
	
	Name

	Length of Below Section

	Description

	Length in coords of section below keyboard.

	Animatable

	True

	Modifiers

	Coords

	Required

	True

	Default

	7.0

	Minimum

	0

	
	scene.keyboard.octave_lines: BoolProp
	
	Name

	Octave Lines

	Description

	Whether to render octave lines.

	Animatable

	True

	Required

	True

	Default

	True

MidiProps

	
	scene.midi.file: PathProp
	
	Name

	MIDI File

	Description

	Path to MIDI file.

	Animatable

	False

	Required

	True

	Is File

	True

	
	scene.midi.speed: FloatProp
	
	Name

	Speed Multiplier

	Description

	MIDI notes speed multiplier.

	Animatable

	False

	Required

	True

	Default

	1.0

	
	scene.midi.min_length: FloatProp
	
	Name

	Minimum Duration

	Description

	Min duration of a note in seconds.

	Animatable

	False

	Required

	True

	Default

	0.1

	Minimum

	0

PianoProps

	
	scene.piano.black_width_fac: FloatProp
	
	Name

	Black Key Width Factor

	Description

	Black key width as factor of white key width.

	Animatable

	False

	Required

	True

	Default

	0.6

	Minimum

	0

ParticleProps

	
	scene.ptcls.pps: FloatProp
	
	Name

	Particles per Second

	Description

	Number of particles to emit per note per second.

	Animatable

	True

	Required

	True

	Default

	40.0

	Minimum

	0

	
	scene.ptcls.air_resist: FloatProp
	
	Name

	Air Resistance

	Description

	Velocity multiplies by this every second.

	Animatable

	True

	Required

	True

	Default

	0.6

	Minimum

	0

	
	scene.ptcls.lifetime: FloatProp
	
	Name

	Lifetime

	Description

	Particle lifetime in seconds.

	Animatable

	True

	Required

	True

	Default

	3.0

	Minimum

	0

	
	scene.ptcls.x_vel: FloatProp
	
	Name

	X Velocity

	Description

	Initial X velocity range in coords/sec.

	Animatable

	True

	Modifiers

	Coords, SecToFrame

	Required

	True

	Default

	1.0

	Minimum

	0

	
	scene.ptcls.y_vel: FloatProp
	
	Name

	Y Velocity

	Description

	Initial Y velocity range in coords/sec.

	Animatable

	True

	Modifiers

	Coords, SecToFrame

	Required

	True

	Default

	4.0

	Minimum

	0

	
	scene.ptcls.wind_strength: FloatProp
	
	Name

	Wind Strength

	Description

	Strength multiplier of wind affecting particles.

	Animatable

	True

	Required

	True

	Default

	1.0

	
	scene.ptcls.heat_strength: FloatProp
	
	Name

	Heat Strength

	Description

	Strength multiplier of heat affecting particles.

	Animatable

	True

	Required

	True

	Default

	1.0

	
	scene.ptcls.gravity: FloatProp
	
	Name

	Gravity

	Description

	Strength multiplier of gravity affecting particles.

	Animatable

	True

	Required

	True

	Default

	1.0

VideoProps

	
	scene.video.resolution: ArrayProp
	
	Name

	Resolution

	Description

	Output video resolution.

	Animatable

	False

	Required

	True

	Default

	[1920 1080]

	
	scene.video.fps: IntProp
	
	Name

	FPS

	Description

	Frames per second of output video.

	Animatable

	False

	Required

	True

	Default

	30

	Minimum

	1

	
	scene.video.vcodec: StrProp
	
	Name

	Video Codec

	Description

	Codec for video, passed to FFmpeg.

	Animatable

	False

	Required

	True

	Default

	libx265

Setup

How to setup your development environment.

Dependencies

See dependencies in Installation.

Additional dependencies for development:

	Git

	GNU Make

Fork and Clone

First, fork the GitHub repository and clone your fork.

Test Video

cd /path/to/pianoray
make wheel
make install
pianoray render tests/furelise.py FurElise -o out.mp4 -p

This should render the video and open it in your video player. Rendering
may take a few minutes.

Conventions

Conventions used internally.

	Frame zero is when the first note begins.

	Note zero is lowest note on piano.

	One coord (unit of distance) is the width of one white key in the video.
This is equal to the horizontal resolution divided by 52. For example, for a
1920x1080 video, one coord is 36.924 pixels.

	C++ functions called by Python may take many arguments in order to obtain all
required prop values. The naming convention is p_video_fps or d_img
or dp_blocks_color. p means a property. d means raw data (numpy
array pointer) which will be wrapped with an internal class.

Rendering

Description of how rendering is done internally.

Pipeline

First, an image of 64-bit floats is created. This is like an unbounded brightness
image of the rendered scene, and will be converted into a standard 8-bit int later.

Each effects is applied to the image.

Last, the compositing library processes the double image, such as adding glare.
After everything is finished, the float image is converted into an int image using
tanh as the transformation function.

C Integration

Description of how C libraries are integrated with Python.

All C code is in pianoray/cutils.

Code that calls the compiler is in pianoray/cpp.py.

Compilation

At every run, the libraries are compiled and stored in the cache directory
(default .prcache).

Loading

Libraries are compiled to shared libraries (.so) and loaded with the
Python ctypes module.

Conventions

Images are of shape (height, width, 3) and type uint8 and double.
See Rendering for more info on how rendering is done.

Parsed MIDI notes (start, end, note, velocity) are serialized as a string
Python side and parsed C side in order to reduce the amount of function
arguments (one char* vs four double*). Serialization specification
can be found in Specifications.

Specifications

Specs of internally used protocols.

MIDI Notes

Notes are parsed from a MIDI file using the Python module mido. In order
to simplify passing these notes to C functions, we serialize them into a string
Python side and parse them C side. This reduces the amount of arguments required
for a C function and removes boilerplate code.

Each note is stored internally as four values, (start_frame, end_frame, note,
velocity). The serialized string representing a sequence of notes is as follows:

uint32 (4bytes): How many notes there are.
For each note:
 double (8bytes): Start frame.
 double (8bytes): End frame.
 uint8 (1byte): Note index.
 uint8 (1byte): Velocity.

File Structure

Information about the project files.

/

Root directory. Contains cool files.

Python module setup.py and MANIFEST.in are here.

There is a Makefile with convenient targets.

.github

GitHub files, like workflows.

docs

Documentation. Docs are generated with Python sphinx and hosted on
ReadTheDocs.

examples

Example recordings and renders.

pianoray

Source code for everything.

pianoray/

Main module and global utilities.
Entry point is here (__main__).

pianoray/cutils

C++ libraries for rendering.

pianoray/effects

OOP effects for organization. Most call libraries from cutils.

pianoray/render

Rendering pipeline.

pianoray/view

PianoRay viewer. Currently in development.

scripts

Small scripts, like style checks.

tests

Testing files, like test video settings.

Cache

PianoRay stores temporary files in a cache directory (default .prcache).
The cache can be safely deleted at any time.

File Structure

	./c_libs: Compiled C library object and library files.

	./output: Output render is stored here.

	./settings.json, ./currently_rendering.txt: Files that store the state
of the rendering. This is used to resume rendering if desired. See
CLI for more info.

Index

 A
 | B
 | D
 | F
 | I
 | P
 | R
 | S
 | T
 | V

A

 	
 	animate() (pianoray.Property method)

 	
 	ArrayProp (class in pianoray)

B

 	
 	BoolProp (class in pianoray)

D

 	
 	default (pianoray.Scene property)

F

 	
 	FloatProp (class in pianoray)

I

 	
 	IntProp (class in pianoray)

P

 	
 	PathProp (class in pianoray)

 	
 	Property (class in pianoray)

 	PropertyGroup (class in pianoray)

R

 	
 	RGBProp (class in pianoray)

S

 	
 	Scene (class in pianoray)

 	set_value() (pianoray.Property method)

 	
 	setup() (pianoray.Scene method)

 	StrProp (class in pianoray)

T

 	
 	type (pianoray.BoolProp attribute)

 	(pianoray.FloatProp attribute)

 	(pianoray.IntProp attribute)

 	(pianoray.StrProp attribute)

V

 	
 	value() (pianoray.Property method)

 	values() (pianoray.Scene method)

 	verify() (pianoray.ArrayProp method)

 	(pianoray.FloatProp method)

 	(pianoray.IntProp method)

 	(pianoray.PathProp method)

 	(pianoray.Property method)

 	(pianoray.StrProp method)

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 PianoRay

_images/furelise.jpg

_images/clementi.jpg

