

PianoRay

[image: _images/furelise.jpg]

About

PianoRay is a piano visualization tool.

[image: ../_images/furelise.jpg]

Features

	Adds dropping blocks.

	Crops piano from video.

	Glare when blocks hit piano.

	Automatically compiles audio and video.

Installation

Dependencies

	Python version 3.8 or higher.

	FFmpeg.

	C++ compiler (g++).

	Python packages listed in requirements.txt

Latest

PianoRay is distributed on PyPI. Install with

pip install pianoray

Master Branch

May be unstable or have bugs.

pip install git+https://github.com/phuang1024/pianoray

Support

Please open an issue or discussion on
GitHub [https://github.com/phuang1024/pianoray/issues].

License

PianoRay is licensed under GNU GPL v3. See LICENSE for the full license
text.

You are free to use the software however you want.

If you are using the code itself, i.e. using some code from PianoRay for your
own projects, you must license the complete derived work with a compatible
license.

If you are just using the output i.e. the rendered videos, you may use the
output however you want, with or without credit.

First Video

First, install PianoRay. Follow instructions in
General/Installation.

Example Files

Download example performance files. This script copies the Fur Elise example
recording to ~/pianoray_tutorial.

cd /tmp
git clone https://github.com/phuang1024/pianoray
cd pianoray/examples/furelise

mkdir ~/pianoray_tutorial
cp video.mp4 midi.mid audio.mp3 ~/pianoray_tutorial

The video file contains the recording of the piano. The MIDI file contains
data about which notes are played. The audio file has the audio.

Create Settings

PianoRay reads settings from a JSON file. This file contains nested mappings
with key: value pairs.

Save this data to ~/pianoray_tutorial/settings.json:

{
 "video": {
 "resolution": [1280, 720],
 "fps": 30
 },
 "midi": {
 "file": "midi.mid"
 },
 "audio": {
 "file": "audio.mp3",
 "start": 20.74
 },
 "keyboard": {
 "file": "video.mp4",
 "start": 4.75,
 "crop": [[252,480], [1793,487], [1789,676], [257,666]],
 "dim_mult": 0.6,
 "dim_add": -8
 }
}

Most of these settings are self explanatory.

The start settings are timestamps, in seconds, of when you press the first
note in the respective media. This is necessary to apply the correct offsets.

The crop setting defines the coordinates of the keyboard in the video.
These values are for the Fur Elise recording.

Render

To start the render, run these commands in a shell:

cd ~/pianoray_tutorial
pianoray render -s settings.json -o out.mp4 -p

This starts rendering, using the provided settings file and saving to the
output file. The -p flag tells PianoRay to open the output file after
rendering.

Rendering may take a few minutes. If the renderer crashes, run the same command
again. If it repeatedly does not work, open an issue on GitHub.

Recording

Instructions for recording and making your own video.

Recording

You will need to record two files: Video and MIDI. In order to record these
files, you will need a MIDI keyboard, a camera, and a computer.

Video

Find a setup with a camera looking down vertically onto the keyboard.
Some things to consider:

	Safety: Make sure the camera won’t fall down.

	Stability: Try to reduce shaking, e.g. from vibrations from the keyboard.

	Focus: Make sure you focus the camera onto the keyboard before recording.
It is very disappointing to find that the video is ruined because the
keyboard recording is blurry (speaking from experience).

	Background: If you desire, place a dark tarp under the keyboard so you can
create the “hands floating over nothing” effect. There are some settings
in PianoRay to dim the background and achieve this effect.

	Privacy: If you plan to release the video to the public, make sure it
doesn’t contain any private information.

MIDI

Connect the MIDI keyboard to the computer. Use MIDI recording software to
record the MIDI. I use MidiEditor [https://midieditor.org/], which has
worked great.

Processing

Audio

Create an audio file from the MIDI.

	Download a soundfont.
SoundFonts4U [https://sites.google.com/site/soundfonts4u] has great
piano soundfonts.

	Install software that can render a MIDI file. I use
FluidSynth [https://github.com/FluidSynth/fluidsynth], and the rest
of these instructions assume you have FluidSynth.

	Run this command, which uses FluidSynth to render and FFmpeg to write
the audio file:
fluidsynth -a alsa -T raw -g GAIN -F - SOUNDFONT.sf2 MIDI.mid |
ffmpeg -y -f s32le -i - -filter:a "volume=2" AUDIO.mp3.
Replace the uppercase words with the respective values. A value of
0.5 for GAIN works usually.

Video

Make sure the video is right side up. That is, your hands come from the
bottom of the screen and play the keyboard.

If you need to rotate it, see
this page [https://stackoverflow.com/a/9570992/16570071] for rotating
with FFmpeg.

Offsets

Find the offsets for respective media. PianoRay uses these offsets. It may be
beneficial to write down these offsets somewhere so you don’t forget them later.

Audio

Open the audio in an audio player and find the timestamp, in seconds, when the
audio starts. I use Audacity [https://audacityteam.org].

Video

Find the moment you play the first note in the video. I use
Blender [https://blender.org]’s video editor.

Video Crop

Find the pixel coordinates of the four corners of the keyboard in the video,
starting from the top left and going clockwise. If you use Blender’s video
editor, keep in mind that Blender’s image viewer has the Y coordinates reversed.

Rendering

Follow instructions in this page for rendering instructions.

CLI

Command line interface arguments.

Type pianoray -h for info.

Example Commands

	Render: pianoray render -s settings.json -o out.mp4

	Render and play: pianoray render -s settings.json -o out.mp4 -p

Resume Previous Render

While rendering, PianoRay saves which frame is currently being rendered to
the cache. This allows resuming a render if it is interrupted.

Configure render resuming with the --resume=... flag.

	If omitted, PianoRay will ask via stdin if you wish to resume.

	If True, PianoRay will always resume if a previous render exists.

	If False, PianoRay will never resume.

If the previous render finished completely, you can pass --resume=True
to only recompile the frames into a video.

Settings

When creating a video, many settings are passed to PianoRay.
The settings should be stored in a JSON file containing dictionaries
of name: value pairs with nested dictionaries.

Example

Save a JSON file of your settings, and pass to pianoray.

Example:

{
 "video": {
 "fps": 30,
 "resolution": [1920, 1080]
 },
 "midi": {
 "path": "/path/to/file.mid"
 }
}

Available

Most settings have default values. See src/utils.py for the default
settings.

See devs/info to understand what a “coord” is.

Colors are [R, G, B] from 0 to 255.

	
	video: Settings about video export.
	
	fps: Frames per second.

	resolution: Video resolution [width, height].

	vcodec: Video codec. This will be passed to FFmpeg, so please
provide a value that FFmpeg recognizes, e.g. libx264.

	
	audio: Settings about audio.
	
	file: Path to audio file.

	start: Timestamp, in seconds, you play the first note in the audio.

	
	composition: Settings about the structure of the video.
	
	margin_start: Seconds of video before the first note.

	margin_end: Seconds of video after the last note ends.

	fade_in: Seconds of fade in.

	fade_out: Seconds of fade out.

	fade_blur: Fade blur radius in coords.

	
	piano: Settings about the piano.
	
	black_width_fac: Black key width as factor of white key width.

	
	blocks: Settings about blocks.
	
	speed: If X is the distance between the top of the screen and the
top of the keyboard, the blocks travel speed * X per second.

	color: RGB color of the blocks.

	radius: Block corner rounding radius in coords.

	glow_intensity: Intensity of glow around the block.

	glow_color: Color of glow.

	glow_radius: Radius of glow in coords.

	
	midi: Settings about MIDI.
	
	file: Path to MIDI file.

	speed: Speed multiplier.

	min_length: Minimum note length in seconds.

	
	keyboard: Settings about rendering the keyboard.
	
	file: Video file containing recording of playing the keyboard.

	start: Timestamp, in seconds, you play the first note in the video.

	crop: Corners of the keyboard in the video, starting from top left and
going clockwise. Should be [[x1, y1], [x2, y2], [x3, y3], [x4, y4]].

	dim_mult: Multiplicative dimming. Give a multiplier value.

	dim_add: Additive dimming. Subtracted from 0 to 255 channels. If you
wish to dim, provide a negative value.

	below_length: Length of the below section in coords.

	octave_lines: Whether to render octave lines.

	
	glare: Settings about rendering glare.
	
	radius: Radius of glare in coords.

	intensity: Intensity value.

	jitter: Random intensity change for each frame.

	streaks: Number of streaks per glare.

Setup

How to setup your development environment.

Dependencies

See dependencies in the General/Installation page.

Additional dependencies for development:

	Git

	GNU Make

Fork and Clone

First, fork the GitHub repository and clone your fork.

Test Video

cd /path/to/pianoray
make wheel
make install
pianoray render -s tests/furelise.json -o out.mp4 -p

This should render the video and open it in your video player. Rendering
may take a few minutes.

File Structure

Information about the project files.

/

Root directory. Contains cool files.

Python module setup.py and MANIFEST.in are here.

There is a Makefile with convenient targets.

.github

GitHub files, like workflows.

docs

Documentation. Docs are generated with Python sphinx and hosted on
ReadTheDocs.

examples

Example recordings for testing.

pianoray

Source code for everything.

pianoray/

Main module and global utilities.

	__init__.py: Module file.

	cpp.py: Handles C++ library compiling and loading.

	logger.py: Logging utilities.

	main.py: Main entry point.

	settings.py: Class for convenient settings access.

	utils.py: Global utilities.

pianoray/cutils

C++ header files for C++ libraries.

	pr_image.hpp: Image class for interacting with raw unsigned char data.

	pr_math.hpp: Math utilities.

	pr_piano.hpp: Utilities relating to rendering, e.g. piano dimensions.

	pr_random.hpp: Random number generator utilities.

pianoray/effects

Files that render the video.

	effect.py: Effect base class for OOP internally.

	midi.py: Parse MIDI.

	blocks.py, blocks.cpp: Rendering blocks.

	glare.py, glare.cpp: Rendering glare.

	keyboard.py: Rendering keyboard.

pianoray/render

Rendering pipeline.

	render.py: Calling effects to render the video.

	video.py: Class for managing video frames and calling FFmpeg to compile
the video.

	lib.py: Load and initialize C++ libraries.

pianoray/view

PianoRay viewer files. Currently in development.

scripts

Small scripts, like style checks.

tests

Testing files, like test JSON settings.

Cache

PianoRay stores temporary files in a cache directory (default .prcache).
The cache can be safely deleted at any time.

File Structure

	./c_libs: Compiled C library object and library files.

	./output: Output render is stored here.

	./settings.json, ./currently_rendering.txt: Files that store the state
of the rendering. This is used to resume rendering if desired. See
CLI for more info.

Information

Just information for now.

	Frame zero is when the first note begins.

	Note zero is lowest note on piano.

	One coord (unit of distance) is the width of one white key
in the video. This is equal to the horizontal resolution divided
by 52. For example, for a 1920x1080 video, one coord is 36.924
pixels.

Index

 nav.xhtml

 Table of Contents

 		
 PianoRay

_images/furelise.jpg

_static/plus.png

_static/file.png

_static/minus.png

